Тепловое излучение

Расчет высоты факельного ствола и определение места его расположения должны учитывать три основных фактора пожарной безопасности:

- радиационно-тепловое воздействие

пламени на персонал и оборудование;

- искрообразование;

- воспламенение отдельных очагов взрывоопасных смесей с воздухом, если была утечка горючих газов.

В случае аварийного сброса больших количеств газа на факел персонал во время обслуживания оборудования или эвакуации не должен подвергаться воздействию значительного теплового излучения. Для этого необходимо, чтобы факельная труба была достаточно высокой или, если это невозможно, принимать защитные меры.

Зависимость температуры нагрева стального оборудования от интенсивности и времени излучения пламени показана на рис.3.

Тепловое излучение
Факел может рассматриваться как точечный источник выброса и можно рассчитать для него зоны, в которых следует обеспечить защиту персонала и оборудования. Так, для факельной трубы диаметром 1200 мм и высотой 60 м при сжигании 440 т/ч углеводородов с молекулярной массой 44 можно выделить (рис.   ):

1- зону (2), в которой требуется защита оборудования, в точке А

интенсивность теплоизлучения равна 34

МДж/(м2 ч);

2- зону (3), в которой требуется защита персонала, в точке В

интенсивность теплоизлучения 17

МДж/(м2 ч).

Приводятся разные данные по общей дозе и  максимальной интенсивности теплового излучения, которое может воспринимать персонал при аварийном выбросе. Например, максимальная интенсивность теплового излучения принимается от 5 до 17 МДж/(м2*ч).

Можно представить на рис.5 суммарное количество теплоизлучения, которое может вынести человек. Безопасный уровень

интенсивности теплоизлучения человек может вынести в течение неограниченного времени.

С увеличением интенсивности теплоизлучения возможное время пребывания человека в зоне теплоизлучения уменьшается.

Для сравнения: интенсивность солнечной радиации составляет 2,5-3,4 МДж/(м2

ч).

Тепловое излучение
Величина интенсивности теплоизлучения не является постоянной во времени, так как она зависит от объема сбрасываемых газов и расстояния между человеком и теплоисточником. Время реакции человека на тепловой раздражитель – 5 с.

Если человек находится у основания факельной трубы в момент внезапного выброса газа, то в течение непродолжительного времени он должен покинуть зону, в которой тепловое напряжение превышает 5 МДж/(м2*ч). При тепловом излучении с интенсивностью 11,3

МДж/(м2*ч) и при коэффициенте светового излучения 0,8 температура на уровне земли через одну минуту составит 90 оС, а через 20 мин – 190 оС. Поэтому при данном излучении время удаления человека без риска поражения составляет 30 с.

Максимальная интенсивность тепловыделения, которую выдерживает в течение всего времени воздействия персонал (человек), можно определить по следующему уравнению:

Тепловое излучение

Причем

Тепловое излучение

где  t-  время облучения, с;

t1- время реакции человека, с;

t2 - время удаления человека, с;

q -интенсивность теплоизлучения, соответствующая общему времени,МДж/(м2*ч);

q1, q2- максимальная и минимальная интенсивность теплоизлучения;

L- длина пламени, м.

Время удаления персонала определяется высотой трубы.

Основными источниками загрязнения являются трубопроводы и объекты техноло-гического назначения: групповые замерные установки, дожимные насосные станции, сборные пункты, товарные парки, устаноки подготовки нефти и газа, насосные и компрессорные станции, газоперерабатывающие заводы, факельные устройства и много-численные сопутствующие объекты (котельные, очистные сооружения, склады расходных материалов и товарной продукции и т.п.), а также вспомогательные производства (предприятия технологического транспорта и нефтемашремонта, базы производственно-технического обслуживания, химреагентов и спецматериалов и др.).

Под все эти объекты производится отвод земель, практически, в постоянное пользование. Площади отводимых земель определяются выбранными технологиями и применяемым оборудованием.


Отечественное же оборудование в связи с использованием недостаточно качественных конструкционных материалов, несовершенства приборов КИП и автоматики имеет большие габариты и высокую металллоёмкость. Неравнозначная надёжность применяемого в технологической установке (объекте) оборудования ведет к повышенной потребности в ремонтных работах и необходимости установки резервных единиц оборудования. Всё это сказывается как на размерах отводимых площадей, так и на загрязнении окружающей среды в результате отказов оборудования и аварийных выбросов и сбросов  при нарушении технологических режимов работы.

Основными загрязнителями являются углеводороды жидкие и газообразные, пластовые воды, агрессивные газы (сероводород, углекислый газ) и химреагенты. Эти загрязнители попадают в окружающую среду в результате утечек через неплотности арматуры и сальников, неорганизованных аварийных выбросов (эксплуатационные скважины, групповые замерные установки, нефтесборные сети, дожимные и кустовые насосные станции, установки предварительного сброса, резервуары-отстойники, установки подготовки нефти и газа, компрессорные станции и установки переработки газа, резервуарные парки, склады хранения химреагентов). С установок подготовки нефти и газа по тем же причинам имеются утечки меркаптанов.

С факельных устройств, котельных, нагревательных печей в качестве продуктов сгорания в окружающую среду выбрасываются оксиды азота, диоксид серы, оксид углерода, сажа.

С ремонтных участков предприятий технологического транспорта, нефтемашремонта и баз обслуживания наряду с выбросами оксидов азота, серы и углерода, сажи выбрасываются в окружающую среду сварочный аэрозоль, серная кислота, пары свинца, толуол, ацетон, краски, масла и других химические продукты.

Наиболее крупные ущербы окружающей среде, а равно и крупные потери углеводородов происходят в результате повреждений линейных сооружений (нефтесборных  сетей, нефтепроводов и газопроводов).

В 1989г. на нефтесборных сетях нефтедобывающих предприятий Союза произошло более 25 тысяч порывов. Статистика интенсивности отказов на магистральных трубопроводах нефти, нефтепродуктов и газа за 1981-1990 годы, равная в среднем 0,35 отказов на 1000 км в год, свидетельствует о некоторой их стабильности. Поэтому данные о порывах нефтесборных сетей за 1989 год могут быть приняты в качестве усреднённых и на последующие годы.

Аварийные ситуации на нефтепроводах ведут к тяжёлым экологическим последствиям. Это обусловлено выходом большого количества нефти и большим загрязнением почвы и водоёмов. Физико-химическое воздействие нефти приводит к трудновосстановимому режиму естественного самоочищения.

Основные причины порывов обусловлены коррозией металла, дефектами труб, браком строительно-монтажных работ, нарушением правил эксплуатации и прочими причинами.

Статистика причинного распределения отказов по магистральным трубопроводам свидетельствует о сокращении отказов из-за коррозии с 34% от общего числа отказов в 1986г. до 23% в 1989г. В то же время за эти годы произошёл рост из-за брака строитель но-монтажных работ с 9,7 до 21%.


Но если для магистральных трубопроводов трубы поставляются с заданными прочностными характеристиками, то этого нельзя сказать о нефтесборных сетях, транспортирующих обводненную продукцию скважин, и водоводах высокого давления системы поддержания пластового давления, транспортирующих агрессивные сточные воды. Отсутствие труб необходимых марок стали и внутренних защитных покрытий на трубах ведут к быстрому и непрогнозируемому выходу их из строя с соответствующими последствиями для окружающей среды и экономики производства.

По данным производственных объединений, в конце 80-х годов количество порывов в высоконапорных водоводах  составляло в  среднем около 12,5 тысяч порывов в год, а срок службы водоводов, транспортирующих высококоррозионные сточные воды, не превышает трех лет. По этим причинам имеет место на больших площадях загрязнение грунтовых вод минерализованными водами.

Несовершенство аппаратурного обеспечения сбора и хранения нефти, низкая степень герметизации сырьевых и товарных резервуаров, сжигание попутного газа в факелах обусловливают 75% потерь легких УВ от общего количества их потерь при эксплуатации нефтяных месторождений.

Таблица 3

Структура потерь легких углеводородов при сборе, подготовке, транспорте и хранении нефти

Источник выделения ЗВ

Ищи здесь, есть все, ну или почти все

Архив блога