Закон Дарси справедлив при соблюдении следующих условий:
a) пористая среда мелкозерниста и поровые каналы достаточно узки;
b) скорость фильтрации и градиент давления малы;
с) изменение скорости фильтрации и градиента давления малы.
При повышении скорости движения жидкости закон Дарси нарушается из-за увеличения потерь давления на эффекты, связанные с инерционными силами: образование вихрей, зон срыва потока с поверхности частиц, гидравлический удар о частицы и т.д. Это так называемая верхняя граница. Закон Дарси может нарушаться и при очень малых скоростях фильтрации в процессе начала движения жидкости из-за проявления неньютоновских реологических свойств жидкости и её взаимодействия с твёрдым скелетом пористой среды. Это нижняя граница.
Верхняя граница. Критерием верхней границы справедливости закона Дарси обычно служит сопоставление числа Рейнольдса Re=war/h с его критическим значением Reкр, после которого линейная связь между потерей напора и расходом нарушается. В выражении для числа Re: w -характерная скорость течения: а - характерный геометрический размер пористой среды; r
- плотность жидкости. Имеется ряд представлений чисел Рейнольдса, полученных различными авторами при том или ином обосновании характерных параметров. Приведём некоторые из данных зависимостей наиболее употребляемые в подземной гидромеханике:
а) Павловского
(1.30)
Критическое число Рейнольдса Reкр=7,5- 9.
б) Щелкачёва
(1.31)
Критическое число Рейнольдса Reкр=1-12.
в) Миллионщикова
(1.32)
Критическое число Рейнольдса Reкр=0,022- 0,29.
Скорость фильтрации uкр, при которой нарушается закон Дарси, называется критической скоростью фильтрации. Нарушение скорости фильтрации не означает перехода от ламинарного движения к турбулентному, а вызвано тем, что силы инерции, возникающие в жидкости за счёт извилистости каналов и изменения площади сечения, становятся при u>uкр соизмеримы с силами трения.
При обработке экспериментальных данных для определения критической скорости пользуются безразмерным параметром Дарси
, (1.33)
представляющим отношение сил вязкого трения к силе давления. В области действия закона Дарси данный параметр равен 1 и уменьшается при превышении числа Re
критического значения.
Нижняя граница. При очень малых скоростях с ростом градиента давления изменение скорости фильтрации не подчиняется закону Дарси. Данное явление объясняется тем, что при малых скоростях становится существенным силовое взаимодействие между твердым скелетом и жидкостью за счет образования аномальных, неньютоновских систем, например, устойчивые коллоидные растворы в виде студнеобразных плёнок, перекрывающих поры и разрушающихся при некотором градиенте давления tн , называемого начальным и зависящим от доли глинистого материала и величины остаточной водонасыщенности. Имеется много реологических моделей неньютоновских жидкостей, наиболее простой из них является модель с предельным градиентом
. (1.34)
Законы фильтрации при Re > Reкр
От точности используемого закона фильтрации зависит достоверность данных исследования скважин и определение параметров пласта. В связи с этим, в области нарушения действия закона Дарси необходимо введение более общих, нелинейных законов фильтрации. Данные законы разделяются на одночленные и двухчленные.
Одночленные законы описываются степенной зависимостью вида
(1.35)
где C, n - постоянные, 1£ n
£ 2.
Данные зависимости неудобны, так как параметр n
в общем случае зависит от скорости фильтрации. В связи с этим, наибольшее употребление нашли двучленные зависимости, дающие плавный переход от закона Дарси к квадратичному, называемому формулой Краснопольского:
(1.36)
Коэффициенты А
и В определяются либо экспериментально, либо теоретически. В последнем случае
(1.37)
где b - структурный коэффициент и по Минскому определяется выражением
(1.38)