Расчетные схемы механической части электропривода

 

Элементы механической части привода механически связаны друг с другом и образуют единую кинематическую Цепь от двигателя к исполнительному органу. Каждый элемент имеет свою скорость движения и характеризуется моментом инерции или массой, а также совокупностью действующих на него моментов или сил. Движение любого элемента описывается одним из уравнений (1.1), (1.2), 


при использовании которых должно быть учтено взаимодействие этого элемента с остальной частью кинематической цепи, что удобно осуществлять путем приведения моментов и усилий, а также моментов инерции и масс. В результате выполнения этой операции приведения реальная кинематическая схема заменяется расчетной энергетически эквивалентной схемой, основу которой составляет тот элемент, движение которого рассматривается.

Приведение указанных величин может быть осуществлено к любому элементу механической части электропривода, но, как правило, этим элементом является вал электродвигателя. Это позволяет наиболее полно исследовать характер движения привода и режим его работы, точнее формировать законы движения. Зная параметры кинематической схемы, можно определить и вид движения исполнительного органа. В некоторых более редких случаях поступают наоборот, осуществляя приведение всех величин к исполнительному органу.

Для выявления существа операции приведения обратимся к рис. 1.1,а, на котором показана кинематическая схема электропривода подъемной лебедки. Двигатель ЭД через соединительную муфту M1, редуктор Р и муфту М2 приводит во вращение барабан Б, на котором навит канат К. К концу каната, прикреплен крюк лебедки Кр (исполнительный орган механизма), к которому подвешивается груз массой т. Нагрузка электропривода определяется действием силы тяжести, а также трением движущихся частей.




Приведение момента нагрузки осуществляют исходя из равенства механической мощности нагрузки двигателя в реальной (рис. 1.1, а) и эквивалентной (рис. 1.1, 6) схемах. Приведение момента нагрузки выполняют двумя способами в зависимости от направлений потока энергии в механической части. Если производится подъем груза, то двигатель совершает полезную работу по подъему груза и покрывает потери мощности на трение в кинематической цепи. Энергия направляется от двигателя к исполнительному органу, и баланс мощностей в этом случае имеет вид


 Обобщая полученный результат, заключаем, что для приведения момента инерции вращающегося элемента к валу двигателя следует разделить момент инерции на квадрат передаточного числа участка кинематической цепи между двигателем и этим элементом, а для приведения массы поступательно движущегося элемента следует умножить массу на квадрат радиуса приведения участка кинематической цепи между двигателем и этим элементом.

В результате выполнения приведения по указанным правилам расчетная схема имеет вид рис. 1.1, б. Отметим, что расчетная схема рис. 1.1, б в теории электропривода получила название одномассовой механической системы. Она соответствует механической части привода с абсолютно жесткими элементами и без зазоров.

Применительно к приведенной расчетной схеме рис. 1.1, б уравнение движения в векторной форме имеет вид



Ищи здесь, есть все, ну или почти все

Архив блога